On the Approximation of Delayed Systems by Taylor Series Expansion
نویسنده
چکیده
It is known that stability properties of delay-differential equations are not preserved by Taylor series expansion of the delayed term. Still, this technique is often used to approximate delayed systems by ordinary differential equations in different engineering and biological applications. In this brief, it is demonstrated through some simple second-order scalar systems that low-order Taylor series expansion of the delayed term approximates the asymptotic behavior of the original delayed system only for certain parameter regions, while for high-order expansions, the approximate system is unstable independently of the system parameters. [DOI: 10.1115/1.4027180]
منابع مشابه
Modeling of Nonlinear Systems with Friction Structure Using Multivariable Taylor Series Expansion
The major aim of this article is modeling of nonlinear systems with friction structure that, thismethod is essentially extended based on taylore expansion polynomial. So in this study, thetaylore expansion was extended in the generalized form for the differential equations of the statespaceform. The proposed structure is based on multi independent variables taylore extended.According to the pro...
متن کاملNew Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation
This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...
متن کاملDegenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind
Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملNUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION
In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.
متن کامل